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Traditional speckle fringe patterns by electronic speckle pattern interferometry (ESPI) are inherently noisy
and of limited visibility, so denoising is the key problem in ESPI. We present the variational denoising
method for ESPI. This method transforms the image denosing to minimizing an appropriate penalized
energy function and solving a partial differential equation. We test the proposed method on computer-
simulated and experimental speckle correlation fringes, respectively. The results show that this technique
is capable of significantly improving the quality of fringe patterns. It works well as a pre-processing for
the fringe patterns by ESPI.
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Electronic speckle pattern interferometry (ESPI) is a
well-known nondestructive and whole-field technique for
applications such as vibration measurement, measure-
ment of displacements and their derivatives[1−6]. How-
ever, the digital speckle fringe patterns of ESPI are inher-
ently full of speckle noise and of limited visibility, which
causes difficulties in post-processing of phase extraction.
Therefore research on effective denoising in fringe pat-
terns by ESPI is a key problem for application of ESPI
technique. Unfortunately, the traditional spatial filtering
and frequency filtering methods usually result in blurring
effect. The filtering method based on partial differential
equations (PDEs) has become an interest-raising research
topic in the past few years[7−10], the main idea of which
is transforming the image processing to solving PDEs.
This method has been successfully applied in ESPI and
its validity has been illustrated[11]. Image denoising
can also be obtained by variational method[9,12,13] and
this method seems to work well for images represented
by functions of bounded variation which includes step
functions[9]. The main idea of this method is enhanc-
ing a noised image by minimizing an appropriate penal-
ized energy function. Using Euler-Lagrange equation, a
PDE can be obtained from the energy function. Then
the filtered image can be reconstructed by solving this
equation.

We apply the variational method in the fringe patterns
by ESPI in this paper, and test the proposed method on
the computer-simulated and experimental speckle corre-
lation fringes, respectively. The results show that the
technique can significantly improve the quality of cor-
relation speckle fringe patterns. It works well as a pre-
processing for the fringe patterns by ESPI.

For a noised image I defined on an image domain Ω,
let u be a denoised image defined as a minimizer for the
function[13]

E(u) =

∫

Ω

φ (|∇u|) dxdy +
λ

2

∫

Ω

|u − I|
2
dxdy, (1)

for which the necessary optimality condition is expressed
in the steady state for the following descent minimization
method:

∂tu = ∇ · (c(|∇u|)∇u) − λ (u − I) ,

u(0) = I, Ω × [0,∞). (2)

In Eq. (2), ∇·(c(|∇u|)∇u) is the diffusion term, and here,
the variational penalty function φ gives the diffusivity
c(s) = φ′(s)/s; λ (u − I) is the fidelity term and λ is
the fidelity coefficient. The two terms work together to
smooth the initial noisy image.

Although there are many other variational methods, we
will only mention Perona-Malik (PM) model here, which
is now one of the most successful tools for image restora-
tion. Considering the following form of φ,

φPM (|∇u|) =
1

2k
ln
(

1 + k |∇u|2
)

, (3)

where k is a constant parameter and the restoration u
can be obtained by minimizing the energy function

EPM(u) =
1

2k

∫

Ω

ln
(

1 + k |∇u|2
)

dxdy

+
λ

2

∫

Ω

|u − I|
2
dxdy. (4)

The Euler-Lagrange optimality equation for this problem
is now

∇ ·

(

1

1 + k |∇u|
2∇u

)

− λ (u − I) = 0,

u(0) = I, Ω × [0,∞). (5)

Let[9]

ck (s) =
(

1 + ks2
)−1

, (6)
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consequently, we expect that the evolution equation

∂tu = ∇ · (c(|∇u|)∇u) − λ (u − I) . (7)

If λ = 0, Eq. (7) shows the famous PM anisotropic
diffusion equation[7]. In model (7), the diffusivity
c (|∇u|) is used for controlling the speed of diffusion: if
∇u has a small value in a neighborhood of a point (x, y),
this point (x, y) is considered as an interior point of a
smooth region of the image and the diffusion is there-
fore strong; if ∇u has a large value in the neighborhood
of (x, y), (x, y) is considered as an edge point and the
diffusion speed is lowered, since c(s) is small for large
s. Therefore the method has good edge protection ca-
pability. However, this model still has a shortcoming.
The noise introduces very large oscillations of the gradi-
ent ∇u. Thus the value of c (|∇u|) is very small and the
noise edges will be kept using the model (7).

Here, we adopt a modification of the PM model de-
veloped by Catté et al.

[8] for ESPI. This model replaces
c (|∇u|) in PM model by c (|∇Gσ ∗ u|), where Gσ is a
Gaussian smoothing kernel[8],

Gσ (x, y) = Cσ−1/2 exp
(

−(x2 + y2)/4σ
)

. (8)

Correspondingly, the filtering PDE can be shown as

∂tu = ∇ · (c (|∇Gσ ∗ u|)∇u) − λ (u − I) ,

u(0) = I, Ω × [0,∞). (9)

In model (9), ∇Gσ ∗ u appears to be an estimate of
the gradient of u at point (x, y). Indeed, the equation
will diffuse only if the gradient is estimated to be small.
Therefore, the isolated noise, which has the large value
of ∇u but small value of ∇Gσ ∗ u, will be eliminated
through the high diffusion speed, whereas, the true edge,
which has the large value of ∇Gσ ∗ u, will be preserved.
To sum up, Eq. (9) has two advantages. The diffusivity
c (|∇Gσ ∗ u|) is small when ∇Gσ ∗ u is big, so that mini-
mal smoothing is acquired around the edge of the image.
Furthermore, Gaussian smoothing avoids noise sensitiv-
ity.

For computing Eq. (9) numerically, we attempt to dis-
cretize it. Our images are represented by M × N ma-
trices of intensity values. So, for any function (i.e., im-
age) u (x, y), we let ui,j denote u (i, j) for 1 ≤ i ≤ M ,
1 ≤ j ≤ N . The evolution equation obtains images at
times tn = n∆t. We denote u (i, j, tn) by un

i,j .
The time derivative ut at (i, j, tn) is approximated by

the forward difference

(ut)
n
i,j =

un+1
i,j − un

i,j

∆t
, (10)

where ∆t is time step size.
The spatial derivatives are

(ux)
n
i,j =

un
i+1,j − un

i−1,j

2
, (uy)

n
i,j =

un
i,j+1 − un

i,j−1

2
. (11)

And the boundary conditions are

un
i,0 = un

i,1, un
i,N+1 = un

i,N , i = 1, 2, · · · , M, (12a)

un
0,j = un

1,j, un
M+1,j = un

M,j, j = 1, 2, · · · , N. (12b)

We denote βn
i,j as an approximation of

c (|∇Gσ ∗ u (i, j, tn)|) = (1 + k(|∇Gσ ∗ u (i, j, tn)|)2)−1.
Then we discretize ∇ · (c (|∇Gσ ∗ u|)∇u) in Eq. (9) by

ϕn
i,j =

(βux)n
i+1,j − (βux)n

i−1,j

2

+
(βuy)n

i,j+1 − (βuy)n
i,j−1

2
. (13)

Finally, we obtain the explicit discrete scheme of Eq. (9)
as

un+1
i,j = un

i,j + ∆t
(

ϕn
i,j − λ(un

i,j − Ii,j)
)

. (14)

For evaluating the real performance of PDE
enhancement-denoising method, we tested the proposed
method on the computer-simulated speckle correlation
fringe and experimentally obtained fringe, respectively,
and compared it with traditional mean filtering and low-
pass Fourier filtering.

Figure 1(a) gives a computer-simulated original fringe
pattern. The computer-simulated fringe was generated
by means of the method reported in Ref. [4] based on

Isub =
∣

∣

∣
4
√

IoIr sin
(

φr − φo +
ϕ

2

)

sin
(ϕ

2

)∣

∣

∣
, (15)

where Io and Ir are the intensities of the object and the
reference beams, respectively; (φr−φo) is the random in-
terferometric phase of the speckle field and ϕ is the phase
change due to the deformation of surface of the tested
object. The fringe pattern by ESPI can be simulated
with φr − φo, Io and Ir taken as random variables with
values uniformly distributed over the intervals [−π, π],
[0, Im], and [0, ρIm], respectively, where Im is a constant
value and ρ is a normalized visibility parameter. Figure
1(a) shows a simulated speckle pattern with Im = 250,

Fig. 1. Computer-simulated fringe pattern by ESPI and its
filtered images. (a) Original fringe pattern; (b) variational
denoised image by model (9); (c) low-pass Fourier filtered
image; (d) mean filtered image.
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ρ = 0.2, and ϕ(x, y) calculated from

ϕ(x, y) = 40

[

exp

(

−
(x − 0.5M)2 + y2

8000

)

+ exp

(

−
(x − 0.5M)2 + (y − N)2

8000

)]

. (16)

Figure 1(b) shows the filtered image by performing model
(9) with ∆t = 0.5, n = 10, k = 0.001 and λ = 0.1. Fig-
ure 1(c) gives its low-pass Fourier filtered image with
frequency threshold value D0 = 20. Figure 1(d) is the
mean filtered image for 10 iterations.

In further studies, an experimental fringe pattern was
tested. The original fringe is shown in Fig. 2(a), it is
a digital speckle shearing interferometry (DSSI) fringe
pattern[2]. Figure 2(b) shows the filtered image by per-
forming model (9) with ∆t = 0.25, n = 10, k = 0.001 and
λ = 0.1. Figure 2(c) gives its low-pass Fourier filtered
image with frequency threshold value D0 = 25. Figure
2(d) is the mean filtered image for 10 iterations.

As we can see from the original images, the noises in the
fringe patterns are high. It is apparent that the proposed
variational denoising method performs significantly well

Fig. 2. Experimental fringe pattern and its filtered images.
(a) Original fringe pattern; (b) variational denoised image
by model (9); (c) low-pass Fourier filtered image; (d) mean
filtered image.

in filtering and preserving the edges of the fringes, which
can be seen in Figs. 1(b) and 2(b). While the edge of
the fringes are destroyed heavily by performing low-pass
Fourier filter and mean filter methods, which can be seen
in Figs. 2(c) and (d). The experimental results show that
the PDE filtered fringe patterns can provide better vi-
sual inspections as compared with these well-known tra-
ditional techniques. It works well as a pre-processing for
the fringe patterns by ESPI.

In conclusion, we apply the variational denoising
method to the ESPI. The denoised image is reconstructed
as the solution of an equation, which is obtained by min-
imizing an appropriate penalized energy function. The
energy function contains both the diffusion term and the
fidelity term, which work together to smooth the initial
noisy image. The main advantage of the method is that it
has both good noise reduction and edge protection capa-
bilities. Therefore it improves the quality of ESPI fringes
significantly.
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López, Appl. Opt. 36, 2783 (1997).

5. K. H. Womack, Opt. Eng. 23, 391 (1984).

6. P. Sun, L. Zhang, and C. Tao, Acta Photon. Sin. (in
Chinese) 34, 1074 (2005).

7. P. Perona and J. Malik, IEEE Trans. Pattern Analysis
and Machine Intelligence 12, 629 (1990).
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